Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 774, 2023 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-36641503

RESUMEN

Treatment of COVID-19 with a soluble version of ACE2 that binds to SARS-CoV-2 virions before they enter host cells is a promising approach, however it needs to be optimized and adapted to emerging viral variants. The computational workflow presented here consists of molecular dynamics simulations for spike RBD-hACE2 binding affinity assessments of multiple spike RBD/hACE2 variants and a novel convolutional neural network architecture working on pairs of voxelized force-fields for efficient search-space reduction. We identified hACE2-Fc K31W and multi-mutation variants as high-affinity candidates, which we validated in vitro with virus neutralization assays. We evaluated binding affinities of these ACE2 variants with the RBDs of Omicron BA.3, Omicron BA.4/BA.5, and Omicron BA.2.75 in silico. In addition, candidates produced in Nicotiana benthamiana, an expression organism for potential large-scale production, showed a 4.6-fold reduction in half-maximal inhibitory concentration (IC50) compared with the same variant produced in CHO cells and an almost six-fold IC50 reduction compared with wild-type hACE2-Fc.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Animales , Cricetinae , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Cricetulus , Simulación de Dinámica Molecular , Unión Proteica
2.
Plant Signal Behav ; 8(11): e26225, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23989243

RESUMEN

CnAIP2 (Callitropsis nootkatensis ABI3-Interacting Protein 2) was previously identified as a protein that interacts with the yellow-cedar ABI3 protein. CnAIP2 plays important roles during several key transitions of the plant lifecycle and acts as a global regulator with functions opposite to those of ABI3 proteins. Here we report that the CnAIP2 gene promoter is strongly upregulated by all of the major plant hormones. Young Arabidopsis seedlings expressing a chimeric CnAIP2pro-GUS construct were subjected to exogenously applied hormones; the maximum fold-enhancement of GUS activity was as high as 47-fold, and each hormone showed a distinctive cell/tissue-specific pattern of GUS induction. By far the greatest response was elicited by the synthetic auxin 2,4-D (47-fold induction); the other hormones tested stimulated GUS activities by 8- to 21-fold. The CnAIP2 promoter also responded to glucose and salt (NaCl), albeit to a lesser extent (2- to 3-fold induction). As well as acting in an antagonistic way to the global regulator ABI3, CnAIP2 appears to participate in multiple hormonal crosstalk pathways to carry out its functions.


Asunto(s)
Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/metabolismo , Tracheophyta/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Unión Proteica/efectos de los fármacos
3.
Plant Physiol ; 161(1): 179-95, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23144188

RESUMEN

ABI3 (for ABSCISIC ACID INSENSITIVE3), a transcription factor of the abscisic acid signal transduction pathway, plays a major role during seed development, dormancy inception, and dormancy maintenance. This protein appears to also function in meristematic and vegetative plant tissues and under certain stress conditions. We have isolated the ABI3 gene ortholog (CnABI3) from yellow cedar (Callitropsis nootkatensis) and found that it was functionally similar to other ABI3 genes of angiosperms. Here, we report that using a yeast (Saccharomyces cerevisiae) two-hybrid approach, we have identified another protein of yellow cedar (CnAIP2; for CnABI3 INTERACTING PROTEIN2) that physically interacts with CnABI3. Functional analyses revealed that CnAIP2 plays important roles during key transitions in the plant life cycle: (1) CnAIP2 impaired seed development and reduced seed dormancy; (2) CnAIP2 promoted root development, particularly the initiation of lateral roots, and the CnAIP2 gene promoter was exquisitely auxin sensitive; and (3) CnAIP2 promoted the transition from vegetative growth to reproductive initiation (i.e. flowering). The nature of the effects of CnAIP2 on these processes and other evidence place CnAIP2 in the category of a "global" regulator, whose actions are antagonistic to those of ABI3.


Asunto(s)
Chamaecyparis/metabolismo , Genes de Plantas , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Ácido Abscísico/metabolismo , Chamaecyparis/genética , Chamaecyparis/crecimiento & desarrollo , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Biblioteca de Genes , Germinación/efectos de los fármacos , Inmunohistoquímica , Ácidos Indolacéticos/metabolismo , Latencia en las Plantas , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Regiones Promotoras Genéticas , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Reproducción , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Factores de Tiempo , Factores de Transcripción/genética , Técnicas del Sistema de Dos Híbridos
4.
Mol Genet Metab ; 107(3): 571-9, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22944366

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid ß (Aß) peptides and the failure of mechanisms to clear toxic aggregates. The Aß42 peptide is considered to be a causative factor that underlies the pathophysiology of AD, in part due to its propensity for misfolding and aggregation; the small oligomers that result represent toxic species. Thus agents that prevent Aß42 misfolding/aggregation or, alternatively improve Aß42 oligomer clearance, may have significant therapeutic value. We have developed the basis for a drug screening system based on transgenic plant cells that express Aß42 fusion proteins to serve as the reliable indicators of the general conformational status of Aß42. Within cells of transgenic tobacco and Nicotiana benthamiana, misfolding of Aß42 causes the misfolding of a GFP fusion partner, and consequently there is a loss of fluorescence associated with the native GFP protein. In a similar fusion consisting of Aß42 linked to hygromycin phosphotransferase II (Hpt II), a hygromycin-resistance marker, misfolding of Aß42 leads to a misfolded Hpt II, and consequently the transgenic cells are unable to grow on media containing hygromycin. Importantly, substitution of the 'aggregation-prone' Aß42 with a missense mutant of Aß42 (F19S/L34F) that is not prone to misfolding/aggregation, 'rescues' both fusion partners. Several 'positive control' chemicals that represent inhibitors of Aß42 aggregation, including curcumin, epigallocatechin-3-gallate (EGCG), and resveratrol show efficacy in preventing the Aß42-fusion proteins from misfolding/aggregating in the transgenic plant cells. We discuss the potential of the two fusion protein systems to serve as the basis for an inexpensive, selective, and efficient screening system in which a plant cell can fluoresce or survive only in the presence of drug candidates that are able to prevent Aß42 misfolding/aggregation.


Asunto(s)
Péptidos beta-Amiloides/química , Evaluación Preclínica de Medicamentos/métodos , Nicotiana/química , Fragmentos de Péptidos/química , Células Vegetales/química , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/genética , Catequina/análogos & derivados , Catequina/farmacología , Ingeniería Celular , Curcumina/farmacología , Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Humanos , Microscopía Fluorescente , Modelos Biológicos , Mutación , Fragmentos de Péptidos/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Células Vegetales/efectos de los fármacos , Células Vegetales/ultraestructura , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Resveratrol , Estilbenos/farmacología , Nicotiana/efectos de los fármacos , Nicotiana/ultraestructura
5.
Methods Mol Biol ; 773: 185-98, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21898257

RESUMEN

Activation tagging is an important tool for gene discovery in plants. This method utilizes a T-DNA sequence that contains four tandem copies of the cauliflower mosaic virus 35S enhancer sequence or promoters oriented outward to the T-DNA border sequences. These elements enhance the expression of genes neighboring on either side of the randomly integrated T-DNA, resulting in gain-of-function phenotypes. Activation tagging has identified a number of genes, including those fundamental to plant development, such as the floral inducer gene, FLOWERING LOCUS T (FT ). The methods surrounding activation-tagging approaches are described in this chapter. While seeds have generally not been the targets of these methods in the past, activation tagging provides a powerful approach to uncover genes involved in seed dormancy and germination, including those that mediate hormone signal transduction.


Asunto(s)
Proteínas de Arabidopsis/genética , Caulimovirus/genética , ADN Bacteriano/genética , Latencia en las Plantas/genética , Semillas/genética , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/virología , Caulimovirus/química , ADN Bacteriano/metabolismo , Expresión Génica , Estudios de Asociación Genética , Germinación/genética , Germinación/fisiología , Mutación/genética , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Semillas/crecimiento & desarrollo , Activación Transcripcional/genética
6.
Plant J ; 47(5): 811-26, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16889649

RESUMEN

A system for targeted gene tagging and local saturation mutagenesis based on maize transposable elements (Ac/Ds) was developed in barley (Hordeum vulgare L.). We generated large numbers of transgenic barley lines carrying a single copy of the non-autonomous maize Ds element at defined positions in the genome. Independent Ds lines were either generated by activating Ds elements in existing single-copy lines after crossing with AcTPase-expressing plants or by Agrobacterium-mediated transformation. Genomic DNA flanking Ds and T-DNA insertion sites from over 200 independent lines was isolated and sequenced, and was used for a sequence based mapping strategy in a barley reference population. More than 100 independent Ds insertion sites were mapped and can be used as launch pads for future targeted tagging of genes in the vicinity of the insertion sites. Sequence analysis of Ds and T-DNA flanking regions revealed a sevenfold preference of both mutagens for insertion into non-redundant, gene-containing regions of the barley genome. However, whilst transposed Ds elements preferentially inserted adjacent to regions with a high number of predicted and experimentally validated matrix attachment regions (nuclear MARs), this was not the case for T-DNA integration sites. These findings and an observed high transposition frequency from mapped launch pads demonstrate the future potential of gene tagging for functional genomics and gene discovery in barley.


Asunto(s)
Elementos Transponibles de ADN , ADN Bacteriano , Genómica/métodos , Hordeum/genética , Composición de Base , Mapeo Cromosómico , Marcación de Gen/métodos , Ligamiento Genético , Regiones de Fijación a la Matriz/genética , Mutagénesis Insercional/métodos , Análisis de Secuencia de ADN , Zea mays/genética
7.
Plant Physiol ; 131(3): 1239-49, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12644674

RESUMEN

Pto confers disease resistance to Pseudomonas syringae pv tomato carrying the cognate avrPto gene. Overexpression of Pto under the cauliflower mosaic virus 35S promoter activates spontaneous lesions and confers disease resistance in tomato (Lycopersicon esculentum) plants in the absence of avrPto. Here, we show that these AvrPto-independent defenses require a functional Prf gene. Several Pto-interacting (Pti) proteins are thought to play a role in Pto-mediated defense pathways. To test if interactions with Pti proteins are required for the AvrPto-independent defense responses by Pto overexpression, we isolated several Pto mutants that were unable to interact with one or more Pti proteins, but retained normal interaction with AvrPto. Overexpression of two mutants, Pto(G50S) and Pto(R150S), failed to activate AvrPto-independent defense responses or confer enhanced resistance to the virulent P. s. pv tomato. When introduced into plants carrying 35S::Pto, 35S::Pto(G50S) dominantly suppressed the AvrPto-independent resistance caused by former transgene. 35S::Pto(G50S) also blocked the induction of a number of defense genes by the wild-type 35S::Pto. However, 35S::Pto(G50S) and 35S::Pto(R150S) plants were completely resistant to P. s. pv tomato (avrPto), indicating a normal gene-for-gene resistance. Furthermore, 35S::Pto(G50S) plants exhibited normal induction of defense genes in recognition of avrPto. Thus, the AvrPto-independent defense activation and gene-for-gene resistance mediated by Pto are functionally separable.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Bacterianas/metabolismo , Expresión Génica , Inmunidad Innata/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiología , Mutación , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Unión Proteica , Mapeo de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/metabolismo , Pseudomonas/genética , Pseudomonas/crecimiento & desarrollo
8.
Proc Natl Acad Sci U S A ; 100(6): 3519-24, 2003 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-12626746

RESUMEN

It is poorly understood why a particular plant species is resistant to the vast majority of potential pathogens that infect other plant species, a phenomenon referred to as "nonhost" resistance. Here, we show that Arabidopsis NHO1, encoding a glycerol kinase, is required for resistance to and induced by Pseudomonas syringae isolates from bean and tobacco. NHO1 is also required for resistance to the fungal pathogen Botrytis cinerea, indicating that NHO1 is not limited to bacterial resistance. Strikingly, P. s. pv. tomato DC3000, an isolate fully virulent on Arabidopsis, actively suppressed the NHO1 expression. This suppression is abolished in coi1 plants, indicating that DC3000 required an intact jasmonic acid signaling pathway in the plant to suppress NHO1 expression. Constitutive overexpression of NHO1 led to enhanced resistance to this otherwise virulent bacterium. The presence of avrB in DC3000, which activates a cultivar-specific "gene-for-gene" resistance in Arabidopsis, restored the induction of NHO1 expression. Thus, NHO1 is deployed for both general and specific resistance in Arabidopsis and targeted by the bacterium for parasitism.


Asunto(s)
Arabidopsis/genética , Arabidopsis/microbiología , Genes de Plantas , Pseudomonas/patogenicidad , Secuencia de Aminoácidos , Arabidopsis/enzimología , Secuencia de Bases , Botrytis/patogenicidad , Mapeo Cromosómico , Clonación Molecular , ADN de Plantas/genética , Expresión Génica , Prueba de Complementación Genética , Glicerol Quinasa/genética , Datos de Secuencia Molecular , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Homología de Secuencia de Aminoácido , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...